
Computational Aspects of Progression for Temporal Equilibrium Logic

Thomas Eiter and Davide Soldà
Institute for Logic and Computation, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria,

eiter@kr.tuwien.ac.at, davide.solda@tuwien.ac.at

Abstract
Temporal logic plays a crucial role in specifying and
reasoning about dynamic systems, where temporal
constraints and properties to be monitored are es-
sential. Traditional approaches like LTL-monitoring
assume monotonicity, which limits their applicabil-
ity to scenarios involving non-monotonic temporal
properties. We delve into complexity aspects of mon-
itoring temporal specifications using non-monotonic
Temporal Equilibrium Logic (TEL), a temporal ex-
tension of Answer Set Programming defined over
Temporal Here and There Logic (THT) with a min-
imality criterion enforcing stable models. Notably,
we study the complexity gap between monitoring
properties in THT and TEL semantics, and the
complexity of monitoring approximations based on
progression, which is widely used in verification
and in AI. In that, we pay particular attention to the
fragment of temporal logic programs.

1 Introduction
Reasoning about dynamic systems and dealing with temporal
data appropriately is an important issue. To this end, a range
of temporal logics such as LTL, CTL, LDL etc. has been de-
veloped that allows one to specify and assess the behavior of
systems with automated support. Monitoring temporal con-
straints and properties is an essential task that provides input
for decision-making, diagnostics, prediction, and many other
tasks. In that, data becomes available in a growing stream,
requiring that reasoning proceeds in an online fashion. To this
end, monitoring approaches for LTL have been developed, in
which a 3-valued semantics is employed [Bauer et al., 2007]
that approximates the LTL semantics, by informally telling
whether a property is established true, false, or remains open.

As with many logics, LTL is monotonic, which limits its
applicability when it comes to model systems involving prop-
erties and features such as exceptions, dealing with incomplete
information, or belief states. Nonmonotonic logics have been
conceived to address such aspects. They e.g. allow for express-
ing defaults and normative behavior [Cabalar et al., 2023],
offer a solution to the frame problem [McCarthy and Hayes,
1981; Kautz, 1986] by concise modeling of inertia, and are
more amenable to elaboration tolerance [McCarthy, 1998] for

developing logical representations. In particular, Equilibrium
Logic [Pearce, 2006], which is the logical basis of Answer Set
Programming (ASP), caters to this possibility.

In ASP, temporal reasoning is usually expressed by encod-
ing time in the language, which has disadvantages compared to
handling time as a first-class citizen. This is done in Temporal
Equilibrium Logic (TEL) [Aguado et al., 2013], which com-
bines Equilibrium Logic with LTL by imposing a stability con-
dition on LTL models resorting to Temporal Here-and-There
Logic (THT) [Aguado et al., 2013]. Rule-based fragments of
TEL like Temporal ASP (TASP) [Aguado et al., 2023] allow
one to express problems beyond LTL (e.g., conformant plan-
ning) [Bozzelli and Pearce, 2016]. The interest in TEL has
been increasing in the recent years, fueled by the availability
of native solvers such as telingo [Cabalar et al., 2019].

As of today, support for online temporal reasoning in ASP is
immature. ASP Streaming engines such as oclingo [Cerexhe
et al., 2014], ticker [Beck et al., 2017], i-dlv-sr [Calimeri
et al., 2021] use incremental ASP evaluation, but support only
limited fragments of TASP and are like telingo bound to
finite traces. MeTeoR [Wang et al., 2022; Wałęga et al., 2023a]
uses interval semantics and does not address monitoring.

Recent work has addressed this issue with progression for
temporal ASP [Soldà et al., 2023]. Progression is a well-
known technique by which formulas are partially evaluated
along temporal states. It has been widely used in logic-based
AI, e.g., in planning [Bacchus and Kabanza, 1998], reason-
ing about actions [Giacomo et al., 2016], or stream reasoning
[de Leng and Heintz, 2018]. Notably, the logical approach to
incremental TEL allows one to verify at runtime whether a
trace satisfies a TEL specification, and to integrate observa-
tions as facts that need no justification. While [Soldà et al.,
2023] presented the approach and an algorithm for TASP
progression, computational aspects such as complexity and
tractability, which in an online setting is desired, were not
addressed. We fill this gap with the following contributions:

● We extend the language for progression to full THT and
TEL, and we generalize the 3-valued semantics and progres-
sion operators P and PTEL in [Soldà et al., 2023] for THT
and TEL, respectively. Furthermore, we provide a novel in-
cremental version P inc

TEL of TEL progression, which is better
suited for online evaluation.

● We characterize the complexity of monitoring under TEL3

and THT3 semantics, showing that they are like TEL and
THT EXPSPACE-complete and PSPACE-complete, respec-
tively, in general [Bozzelli and Pearce, 2015]; we remind that
LTL is PSPACE-complete. In our analysis, we also address
observations provided as facts in an online manner; notably,
they do not lead to a complexity increase in general.

● We show that THT progression with P is feasible in poly-
nomial time, while TEL progression with PTEL (and like-
wise P inc

TEL) is mildly intractable, viz. Dp-complete. Since
stable model checking of (atemporal) ASP programs is co-
NP-complete [Eiter and Gottlob, 1995; Pearce, 2006], this is
close to what we optimally could expect. The derivation em-
ploys suitable structures for storing progression formulas that
can be incrementally maintained. We then present normal and
headcycle-free temporal ASP programs as tractable classes
of TASP for TEL progression with PTEL, while unrestricted
TASP harnesses the full complexity of THT resp. TEL.
Our results show that PTEL and P progression are (nearly)
tractable approximations of the TEL and THT semantics and
their 3-valued versions. Furthermore, P inc

TEL is a promising
basis for practical implementation, as the syntactic restrictions
allows one to express action domains and goals to be achieved.

2 Preliminaries
Both TEL and THT over infinite traces [Aguado et al., 2013]
share the same syntax. We are interested in a fragment L of
LTL with past-time operators, generated by the grammar

F ∶∶= � ∣ p ∣ F ○ F ∣XF ∣ F R F ∣ F U F ∣Y F ′

F ′ ∶∶= � ∣ p ∣Y F ′
(1)

where p ∈ P for a finite set P of propositional atoms and
○ ∈ {∧, ∨,→}. Negation is defined as ¬ϕ ≡ ϕ→ � and ⊺ ≡ ¬�.
As usual, G (globally) is defined by Gϕ ≡ �Rϕ and F (finally)
by Fϕ ≡ ⊺Uϕ.

The semantics of THT is defined via sequences of pairs of
sets of atoms. A THT -trace (or simply trace, if clear from con-
text) is an infinite sequence ⟨H,T⟩ of pairs ⟨Hi,Ti⟩, where
Hi ⊆ Ti ⊆ P for each i ≥ 0. Both H and T are traces as usual,
i.e., infinite sequences H =H0,H1, . . . resp. T = T0,T1, . . .
of sets of atoms.

Definition 1 (THT -Satisfaction). Satisfaction of a THT for-
mula by a THT -trace I = ⟨H,T⟩ at time k, where 0 ≤ k is
integer, is inductively defined as follows:

• I, k /⊧ �
• I, k ⊧ p if p ∈Hk, for any atom p ∈ P
• I, k ⊧Y ϕ if I, k − 1 ⊧ ϕ and k > 0
• I, k ⊧ ϕ ∨ ψ if I, k ⊧ ϕ or I, k ⊧ ψ
• I, k ⊧ ϕ ∧ ψ if I, k ⊧ ϕ and I, k ⊧ ψ

• I, k ⊧ ϕ→ ψ if {⟨T,T⟩, k /⊧ ϕ or ⟨T,T⟩, k ⊧ ψ, and
I, k /⊧ ϕ or I, k ⊧ ψ

• I, k ⊧X ϕ if I, k + 1 ⊧ ϕ
• I, k ⊧ ϕU ψ if there is j ≥ k s.t. I, j ⊧ ψ,

and for all j′ ∈ [k, j), I, j′ ⊧ ϕ

• I, k ⊧ ϕR ψ if for all j ≥ k s.t. I, j /⊧ ψ,
there exists j′ ∈ [k, j), I, j′ ⊧ ϕ

A THT -trace I is a model for a formula ϕ if I,0 ⊧ ϕ.
A THT -trace I is total, if H = T; we then simply write

T for ⟨T,T⟩ if no confusion arises. Notably, T ⊧ ϕ, i.e.,
⟨T,T⟩ ⊧ ϕ, iff T ⊧LTL ϕ [Aguado et al., 2011]. The salient
difference between THT and LTL is a different evaluation of
→. In particular the excluded middle axiom p ∨ ¬p does not
hold in THT . This is witnessed by e.g., I = ⟨H,T⟩ where
H = ∅ω and T = {p}ω. However, THT collapses to LTL
under a temporal excluded middle axiom

T EM =GEM, where EM = ⋀p∈P(p ∨ ¬p). (2)

Proposition 1 (cf. [Cabalar and Demri, 2011]). For ϕ ∈ L and
I=⟨H,T⟩, I ⊧ ϕ ∧ T EM iff T ⊧LTL ϕ and T =H.

For traces T,T′, and O, we write T ≤O T′ if Oi ⊆ Ti ⊆
T′i holds for every i ≥ 0. Furthermore, for THT -traces I =
⟨H,T⟩, I′ = ⟨H′,T′⟩, and a trace O, we write I ≤O I′ if
H ≤O H′ and T = T′. Intuitively, ≤O serves for defining H-
minimality modulo observations; they are present in O online
as facts and thus do not need to be proven.

We are now ready to introduce the semantics of TEL.
Definition 2 (TEL-Satisfaction w.r.t. Observations). Given an
observation trace O, a trace O ≤ T is a temporal equilibrium
model of a formula ϕ ∈ L w.r.t. O, if (i) ⟨T,T⟩ ⊧ ϕ, i.e., T is
a total THT model of ϕ, and (ii) no H ≠ T exists s.t. H ≤O T
and ⟨H,T⟩ ⊧ ϕ, i.e., ⟨T,T⟩ is minimal w.r.t. O.

If the observation trace O is empty, i.e., O = ∅ω, Defini-
tion 2 yields classical TEL satisfaction [Aguado et al., 2013].
Given two traces T,O and a formula ϕ ∈ L, we denote by
T ⊧OTEL ϕ that T is an equilibrium trace of ϕ modulo obser-
vations O, where we may drop O if clear from context.

We will use temporal equilibrium model and equilib-
rium/stable traces interchangeably. Furthermore, we shall con-
sider temporal programs [Cabalar, 2010], a fragment of L that
resembles and extends the usual logic programming syntax.
Example 1. Assume T and O are traces, where switch, and
power_failure can appear in O (they need no justification).
A model πEX of an action domain has the following axioms:

r0 ∶ switch ∨ X anomaly

r1 ∶ G(switch ∧ ¬light ∧ ¬X anomaly → X light)
r2 ∶ G(switch ∧ ¬X anomaly →X change_light)
r3 ∶ G(light ∧ X anomaly →X change_light)
r4 ∶ G(¬X change_light ∧ light→ X light)
r5 ∶ G(power_failure→ anomaly)
r6 ∶ G(switch ∧ X switch→ �)

Intuitively, r0 says that either the light will be turned on,
or an anomaly will happen at the second state; r1 is a de-
feasible effect axiom; r2 and r3 keep track of action ex-
ecutions or anomalies that flip the value of light; r4 is
an inertia rule for light; r5 defines the power_failure
as an anomaly; r6 is the property to monitor. Trace T =
{s},{c_l, l},{a, p_f, c_l},{a, p_f}ω is an equilibrium trace
of πEX w.r.t. O = {s},∅,{p_f}ω .

Tf

Tf

Tf ⋅∅ω is an equilibrium trace⇔ ⊺
no equilibrium trace Tf ⋅T′ exists⇔ �

Figure 1: TEL3 verdict for trace-prefix Tf under scrutiny.

We recall that in LTL, satisfiability is PSPACE-complete;
the same holds for THT , while in TEL satisfiability is
EXPSPACE-complete [Bozzelli and Pearce, 2016], where
EXPSPACE-hardness holds for temporal programs. LTL stays
in PSPACE if past time operators (including Y) are added, cf.
[Lichtenstein et al., 1985]; this extends to the language L.

Lemma 1. Deciding whether ϕ ∈ L is THT - (resp. TEL-)
satisfiable is PSPACE- (resp. EXPSPACE-)complete.

3 Online Setting
In online computation, we only have a prefix of a trace at
any point in time. This motivates the following THT3 seman-
tics with truth-values true (⊺), false (�), and undefined (?).
Given a THT -trace I = ⟨H,T⟩, its k-prefix (resp. k-suffix
or suffix at k) is the sequence ⟨H0,T0⟩, . . . , ⟨Hk,Tk⟩ (resp.
Ik = ⟨Hk,Tk⟩, ⟨Hk+1,Tk+1⟩, . . .), 0 ≤ k. A prefix of I is any
k-prefix If of I whose length, denoted by ∣If ∣, is k+1. We call
I an extension of If w.r.t. observation trace O, if H ≤O T
holds; by ext(If ,O) we denote the set of all such I. We de-
note by PreTHT the set of all possible prefixes. Similarly as
above, we may write Tf instead of ⟨Tf ,Tf ⟩ and omit O.

Definition 3 (THT3 semantics, cf. [Soldà et al., 2023]). The
truth value of ϕ ∈ L w.r.t. a prefix If and an observation trace
O is as follows:

If ⊧OTHT3
ϕ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ if I ⊧ ϕ for every I ∈ ext(If ,O),
� if I /⊧ ϕ for every I ∈ ext(If ,O),
? otherwise.

Here O is a parameter to define a 3-valued logic for TEL,
where minimality over traces matters. If O is empty, Defn. 3
is the THT version of the LTL3 logic of Bauer et al. [2007];
further restriction to total traces yields their LTL3 semantics.

TEL3 semantics The 3-valued semantics of TEL, depicted
in Figure 1, has been defined as follows:

Definition 4 (TEL3 semantics, cf. [Soldà et al., 2023]). For
a total prefix Tf of length k, ϕ ∈ L, and observation trace O,

Tf ⊧OTEL3
ϕ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ if Tf ⋅Ok ⊧OTEL ϕ,
� if T /⊧OTEL ϕ, ∀ T ∈ ext(Tf ,O),
? otherwise.

Note that the single minimal LTL model in ext(Tf ,O) is
used for the verdict v = ⊺; this is because nonmonotonicity of
TEL may compromise the persistence of verdict ⊺ when Tf

is extended. The possible evolution of the verdict over time is
illustrated in Figure 2. The dotted arrow would not appear in a
monotonic setting like LTL3 , or THT3 , as ⊺ would be valid.
For example, for ϕ = G(q ∨ ¬ q) ∧ G(q → G p) we have
∅ ⊧TEL3 ϕ = ⊺, while ∅⋅{q, p} ⊧TEL3 ϕ = ?. The reading

? ⊺ �
Minimality criteriaMinimality criteria

Figure 2: Evolution of the TEL3 verdict.

of verdict ⊺ is that if nothing is left to be proven (i.e., empty
T-suffix), this extension yields an equilibrium trace.

THT has the so-called persistence property, viz. that
⟨H,T⟩ ⊧ ϕ implies T ⊧ ϕ. As we deal with three possible
verdicts and a fixed prefix, only a weaker form holds.
Lemma 2 (Persistence for THT3). For every ϕ ∈ L, prefix
If = ⟨Hf ,Tf ⟩, and observation trace O, If ⊧OTHT3

ϕ≠�
implies Tf ⊧OTHT3

ϕ≠�.

Note that both (I1) If ⊧OTHT3
ϕ = � and (T1) Tf ⊧OTHT3

ϕ = ⊺ may hold. E.g., for ϕ = p ∨ ¬p, empty O, Tf = {p},
and If = ⟨∅,{p}⟩, we have If /⊧ p ∨ ¬p while Tf ⊧ p ∨ ¬p.
Similarly, both (I2) If ⊧OTHT3

ϕ = ⊺ and (T2) Tf ⊧OTHT3
ϕ =

? may hold, e.g. for ϕ = p→Xp and O, If , Tf as before.

3.1 Complexity
We now analyze the complexity of the THT3 and the TEL3

semantics. We assume that prefixes of traces are explicitly
given. We consider here that O is described by an LTL-
formula ψ, such that for each model T of ψ and position
i ≥ 0, T, i ⊧LTL p iff p ∈Oi.

We start by showing a negative result about the complexity
of computing the verdict of THT3 and of TEL3 semantics,
that justifies the introduction of the progression function P ,
and, respectively, PTEL, which are more efficient.
Theorem 1. Given ϕ ∈ L, a prefix If = ⟨Hf ,Tf ⟩, and a
arbitrary observations trace O model of an LTL formula ψ,
namely O ⊧LTL ψ, deciding If ⊧OTHT3

ϕ = v for v ∈ {⊺,�, ?}
is PSPACE-complete, and PSPACE-hardness holds if v is fixed
arbitrarily and O is empty.

The hardness results are shown by simple reductions from
THT -(non)validity, and the membership results by reductions
to LTL-(un)satisfiability. For the latter, we exploit the star-
transformation of THT into LTL [Cabalar and Demri, 2011].
We encode the prefix If into a formula ϕIf and use the follow-
ing formula ψO to constrain the models by the observations
from O, which are expressed by the LTL formula ψ:

ψO = ψ̄ ∧ T EMP̄ ∧G(p̄→ p),
where ψ̄ is ψ with all occurrences of p replaced by p̄ and
T EMP̄ is T EM restricted to the atoms in P̄ = {p̄ ∣ p ∈ P}.
Proposition 2. The THT -models I of ψO coincide on P with
the traces over P that include O, and each I restricted to P̄ is
total and coincides with the bar-version Ō of O.

For the TEL3 -semantics, we obtain a complexity picture
analogous to Theorem 1.
Theorem 2. Given ϕ ∈ L, an LTL-prefix Tf , and a formula
ψ describing an observation trace O, deciding Tf ⊧OTEL3

v for a given v ∈ {⊺,�, ?} is EXPSPACE-complete, where
EXPSPACE-hardness holds if v = � or v =?, while for v = ⊺
the problem is PSPACE-complete and co-NP if O = ∅ω .

The EXPSPACE membership and hardness results are
shown by reductions to resp. from TEL-(un)satisfiability,
where the hardness results hold if, in addition, O is empty.
For v = ⊺, the problem is in PSPACE: there are only exponen-
tially many If for which must check If ⋅Ok ⊧ ϕ, where k is
the length of Tf . For each such If , this reduces to an LTL-
entailment test, which is in PSPACE, and looping through
all If is feasible in PSPACE. Notably, if in addition, O is
empty, the complexity drops to co-NP as the test If ⋅∅ω ⊧ ϕ
reduces to an LTL-model checking problem that is polyno-
mial. The PSPACE- resp. co-NP-hardness is inherited from the
complexity of LTL resp. ASP programs [Eiter and Gottlob,
1995].

We note that the hardness proofs in Theorem 2 can be
adjusted to temporal programs showing that they harness the
full complexity of TEL3 -semantics.

4 Progression for THT
As many monitoring tools have an online setting (see [Cimatti
et al., 2022], [Chen and Roşu, 2007] among the others), we
are interested in studying a framework where observations
are provided on the fly. We thus consider an online compu-
tation of the THT3 semantics that relies on the progression
technique for THT in [Soldà et al., 2023], which yields an
approximation of the THT3 semantics.

In the progressive evaluation of a formula, an implication
ϕ = p → Fq may be only partially evaluable in the current
state –when p belongs to the current state, but q does not– and
we must delegate part of the evaluation to the future, therefore
we rewrite ϕ as Fq. The main idea is that we propagate Fq
until we see q in the trace, when we can finally conclude ⊺.

We denote by Lc the set of formulas generated by the gram-
mar in (1), where in place of → also →c may occur. The →c
implication guides the progression by marking implication that
must be evaluated in the There-trace only. Note that [Soldà
et al., 2023] disregarded full U and R (only F and G were
considered). We now introduce THT progression.
Definition 5 (THT progression on a prefix state). Progression
P ∶ Lc ×PreTHT ×N→ Lc is the partial function mapping a
formula ψ, a THT -prefix If = ⟨Hf ,Tf ⟩ of length k, and an
integer i ∈ [0, k), to an Lc formula as follows:

1. P(�, If , i) = �
2. P(p, If , i) = ⊺ if p ∈Hf

i , and p ∈ P
3. P(p, If , i) = � if p /∈Hf

i , and p ∈ P
4. P(ϕ1 ∨ ϕ2, If , i) = P(ϕ1, If , i) ∨P(ϕ2, If , i)
5. P(ϕ1 ∧ ϕ2, If , i) = P(ϕ1, If , i) ∧P(ϕ2, If , i)
6. P(ϕ1 →c ϕ2, If , i) = P(ϕ1,Tf , i) →c P(ϕ2,Tf , i)

7. P(ϕ1 → ϕ2, I
f , i)={P(ϕ1, I

f , i) → P(ϕ2, If , i) ∧
(P(ϕ1,Tf , i) →c P(ϕ2,Tf , i))

8. P(Yϕ, If , i) = P(ϕ, If , i − 1) if i > 0 else �
9. P(Xϕ, If , i) = ϕ

10. P(ϕ1Uϕ2, If , i)=P(ϕ2, If , i)∨(P(ϕ1, If , i)∧ϕ1Uϕ2)
11. P(ϕ1Rϕ2, If , i)=P(ϕ2, If , i)∧(P(ϕ1, If , i)∨ϕ1Rϕ2)

In addition, ⊺ →∗ � is replaced by �; � →∗ ϕ by ⊺; and ϕ→∗ ⊺
by ⊺, for every formula ϕ and →∗∈ {→,→c}.Furthermore,
⊺∨ϕ is replaced by ⊺; �∨ϕ by ϕ; �∧ϕ by �; and ⊺∧ϕ byϕ.

Note that P(Gϕ, If , i)=P(ϕ, If , i)∧Gϕ and P(Fϕ, If , i) =
P(ϕ, If , i) ∨Fϕ. We do not apply the progression recursively
on the future states, but we do so on the sub-prefix of the trace,
as we assume to have access to the current and past states. Let
us progress rule r2 ∈ πEX of the Example 1 over Tf = {s}.
The application of progression leads to P(r2, ⟨Tf ,Tf ⟩,0) =
G(s ∧ ¬X a→X c_l) ∧ (¬a→ c_l).
Lemma 3. If ϕ has no temporal operators, then P(ϕ, If ,
k)= v, v ∈ {⊺,�}, for every trace If and k ∈ [0, ∣Tf ∣).

In an online setting, the prefix is provided incrementally,
extending it by one state at each iteration. The progression
over a prefix is thus defined as follows.

Definition 6 (THT progression on a prefix). The progression
of ϕ ∈ L on the THT-prefix If is

P(ϕ, If) = {v if v ∈ {⊺,�}
? otherwise

(3)

with v = P ∣If ∣(ϕ, If), where P0(ϕ, If) = ϕ and P i(ϕ, If) =
P(P i−1(ϕ, If), If , i) for 0 < i ≤ ∣If ∣.

An intuitive reading of the progression outcome P (ϕ, If) =
v is as follows: (i) v = ⊺ means that the property expressed by
ϕ is already satisfied within the prefix If ; (ii) the case v = �
is the opposite, i.e., the violation of ϕ has been detected within
the prefix I; finally, (iii) v = ? means that one abstains given
the partially processed formula ϕ. The following result now
states that the progression function P faithfully approximates
the THT3 semantics.

Theorem 3 (THT verdict on prefixes). For every prefix If ,
observation trace O, and formula ϕ ∈ L,

P(ϕ, If)= v implies If ⊧OTHT3
ϕ= v for v ∈ {⊺,�}.

4.1 Computing P Progression
In the next results, we show that a P application to a formula
ϕ ∈ Lc on a prefix If is feasible in polynomial time. By
Theorem 3, we thus may justify P progression as a tractable
approximation of the THT3 semantics. We first show that
computing a single progression step on a state that is tractable.
Let us denote by

→
nψ the number of → and →c symbols in ψ,

by
temp
nψ the number of U and R symbols in ψ.

Theorem 4. Given ψ ∈ Lc, a prefix If of length k, and s ∈
[0, k), obtaining some ψ′ ≡THT P(ψ, If , s) = ψ′′ is feasible
in polynomial time where (i) ψ′′ ∈ {⊺,�} implies ψ′ = ψ′′ and
(ii) ∣ψ′∣ ≤ (→nψ +1)(

temp
nψ +2)∣ψ∣.

Proof (Sketch). The result is obtained by using two look-up
tables T andH, where each sub-formula φi of ψ is progressed
for Tf resp. If at every position t ∈ [0, k) to a formula φ′i
that is memorized in T [φi, t] resp. inH[φi, t]. One can then
assemble ϕ′i from the progression results of its subformulas
ϕ′j stored in T and H. The key to having a polynomial-size

ψ0: U
ψ1: U

. . .
F p F q

. . .
.

ψ2: U
. . .

.
. . .

F r F s

Figure 3: Abstract syntax tree of ψ, where p, q, r, s ∈ P .

output is the fact that for progression over a total trace, we
need to consider only one of → and →c in the assembly as
they yield equivalent results. Without this optimization, the
application of P may lead to exponential outcomes.

Note that whenever φ′i /∈ {⊺,�}, we can simply write
T [φi, t] =? (or T [φi, t − 1] =? for the Y-case) if we are
interested in the decision problem only.

For computing P(ϕ, If), repeated application of
P(ϕ, If , k) does not allow us to conclude tractability, as ϕ
may grow exponentially when progression is applied due to
U and R operators. As an extreme example, consider the
case of nested U: ψi = ψ2i+1 U ψ2i+2 for i = 0, . . . ,2n−1 − 1
and ψi = F p for some p ∈ P for all i = 2n−1, . . . ,2n − 1,
whose abstract syntax tree is depicted in Figure 3. By
repeated application of P as in Theorem 4, P(ψ0,T

f) grows
exponentially in the size of Tf = ∅k≥1.

Fortunately, we can avoid exponential explosion by sharing
subformulas. Indeed, progressing in the example ψ0 over ∅
will yield two copies of ψ1 in the output formula for progres-
sion at state 1; these copies can be shared.

To represent formulas for the THT progression in a suc-
cinct way, we use the following concept and notation. A DAG
representation of a formula ψ is any directed acyclic graph re-
sembling the syntax tree of ϕ with possible sharing of subtrees.
Let us denote by Ptemp(ϕ, If , i) the formula as in Definition 5
but with result p in cases 2 and 3; i.e., p is not evaluated over
If and thus independent of If .

Definition 7. Given a DAG-representation of ψ ∈ L and ϕ ∈
sub(ψ), we denote by N j

i ϕ the DAG representing the formula
P jtemp(ϕ, If , i) for any If of length ≤ i.

Notably, Ptemp(ϕ, If , i) can be viewed as a template to ob-
tain P(ϕ, If , i) by evaluating it over prefix If , and accordingly
N j
i ϕ represents a template P jtemp(ϕ, If , i) whose evaluation

over If yields P j(ϕ, If i), i.e., the result of j-fold progression
of ϕ over the i-suffix of If .

Lemma 4. Given ψ ∈ L and k > 0 written in unary, we can
computeNk

0 ψ in polynomial time (more precisely inO(k2∣ψ∣)
time).

Proof. We provide an algorithm that computes a DAG with the
root node labeled by Nk

0 ψ, saving memory by means of shar-
ing subformulas. Given the abstract syntax tree of the formula,
we label each node representing the subformula ϕ by N0

0 ϕ.
When applying progression toN j

i ϕ, we check whether already
a node for N j+1

i ϕ exists; if so, the reference to N j+1
i ϕ is used;

otherwise a new node N j+1
i ϕ is created, and we rewrite ϕ,

applying Definition 5, with references to the progressions of
its subformulas, by cases as follows:

• N j+1
i ϕ points to N j

i ϕ, if ϕ has no temporal operators;

• N j+1
i Xϕ points to N j

i+1ϕ;

• N j+1
i Yϕ points to N j+1

i−1 ϕ;

• N j+1
i ϕ1Uϕ2 points to a formula forN j+1

i ϕ2∨N j+1
i ϕ1∧

N j
i+1(ϕ1Uϕ2); to avoid introducing nodes for new sub-

formulas, we may view U progression as a ternary con-
nective, where ϕ1Uϕ2 = � ∨ ⊺ ∧ (ϕ1Uϕ2). The case
N j+1
i (ϕ1Rϕ2) is analogous.

We iterate the process from j = 0, . . . , k until the root of the
DAG is labeled by Nk

0 ψ; importantly, each N j
i of k2∣ψ∣ nodes

occurs at any point in time at most once in the DAG.
Also in this case, we first run the algorithm for the T- part,

successively for the H-part. The Here-DAG may share some
nodes from the There-DAG if there are implications.

Thus, we can tractably compute the verdict of the progres-
sion on a formula ψ when a new state is provided:
Theorem 5. For any ϕ ∈ L, prefix If , such that ∣If ∣ = k, a
DAG representation of P(ϕ, If) is computable in polynomial
time (more precisely, in O(k2∣ψ∣) time).

Proof. By Lemma 4, the DAG Nk
0 ψ for the template formula

Pktemp(ϕ, If ,0) is computable in O(k2∣ϕ∣) time and by fol-
lowing the lookup technique of Theorem 4 we can compute
the verdict, where the Here-DAG and the There-DAG allow
us to efficiently navigate to sub-formulas; this is also feasible,
including simplifications, in O(k2∣ϕ∣) time.

5 Progression for TEL
TEL progression resorts to THT progression as follows.
Definition 8 (TEL progression on a prefix, cf. [Soldà et al.,
2023]). The TEL progression of ϕ ∈ L on a total prefix Tf is

PTEL(ϕ,Tf) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ if ϕ′ = ⊺ ∧ ∀Hf ⊂Tf ∶ ϕ′′(Hf) = �
� if ϕ′ = � ∨ ∃Hf ⊂Tf ∶ ϕ′′(Hf) = ⊺
? otherwise,

whereϕ′ =P(ϕ, ⟨Tf ,Tf ⟩), ϕ′′(Hf)=P(ϕ, ⟨Hf ,Tf ⟩).
Definition 8 faithfully approximates TEL3 semantics.

Theorem 6 (TEL verdict on prefixes). For any formula ϕ,
prefix Tf , and observation trace O, PTEL progression is
sound w.r.t. the TEL3 -verdict, i.e.,

PTEL(ϕ,Tf)= v implies Tf ⊧OTEL3
ϕ= v, for v ∈ {⊺,�}.

We note that while both THT3 and TEL3 in Defn. 3 resp.
4 take an observation trace into account, the progressions P
and PTEL do not. This is because we assume the observations
are already encoded in the prefix of the trace to progress. If
we replace Hf ⊂ Tf in Defn. 8 with Hf <O Tf defined by
Oi ⊆ Hf

i ⊆ Tf
i for i ∈ [0, ∣Tf ∣) and Hf ≠ Tf , Theorem 6

still holds.
Since we focus on online computations, we introduce an

incremental PTEL progression, where we resort to the Y tem-
poral operator to rewrite the formula, unfolding it using the
inductive definitions of the temporal operators.

Definition 9. The incremental version of TEL progression of
ϕ ∈ L on a total prefix Tf for position i ∈ [0, ∣Tf ∣) is

P inc
TEL(ϕ,Tf , i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ if ϕ′i = ⊺ ∧ ∀Hf ⊂Tf ∶ ϕ′′i (Hf) = �
� if ϕ′i = � ∨ ∃Hf ⊂Tf ∶ ϕ′′i (Hf) = ⊺
ϕY otherwise,

where ϕ′i =P(ϕ, ⟨Tf ,Tf ⟩, i), ϕ′′i (Hf)=P(ϕ, ⟨Hf ,Tf ⟩, i),
ϕY is defined inductively by

• �Y = �;

• (X ϕ1)Y = ϕ1;

• pY =Yp if p ∈ P;

• (Y ϕ1)Y =YYϕ1;

• (ϕ1 ○ ϕ2)Y = ϕY1 ○ ϕY2 for ○ ∈ {→,∧,∨};
• (ϕ1U ϕ2)Y = ϕY2 ∨ (ϕY1 ∧ (ϕ1U ϕ2));
• (ϕ1R ϕ2)Y = ϕY2 ∧ (ϕY1 ∨ (ϕ1R ϕ2)).

We define P inc,i
TEL (ϕ,Tf) as the P inc

TEL progression reached
at state i, i.e., P inc,0

TEL (ϕ,Tf ,0) = ϕ and P inc,i
TEL (ϕ,Tf) =

P inc
TEL(P

inc,i−1
TEL (ϕ,Tf),Tf , i) for 0 < i ≤ ∣Tf ∣. Then we

obtain at the end of Tf the PTEL-result. Formally, let
P inc
TEL(ϕ,Tf) = P inc,∣Tf

∣

TEL (ϕ,Tf). Then

Theorem 7. For every ϕ ∈ L and prefix Tf , PTEL(ϕ,Tf) = v
iff P inc

TEL(ϕ,Tf) = v.

Note that the possible evolution of the verdict over time is
still captured by Figure 2 even under the 3-valued semantics
induced by PTEL (or, equivalently P inc

TEL).

5.1 Computing PTEL Progression
The results above show an exponential complexity gap
between THT3 -satisfiability (PSPACE-complete) andTEL-
satisfiability (EXPSPACE-complete). We find a complexity
gap between the P and the PTEL approximation, but it is
much smaller: while intractable, PTEL is in the Boolean Hi-
erarchy and close to NP and co-NP, being not harder than the
conjunction of an NP and a co-NP problem.

Theorem 8. Given ϕ ∈ L and a prefix Tf , deciding
PTEL(ψ,Tf) = v is (i) for v = ⊺ co-NP-complete, (ii) for
v = � NP-complete, and (iii) for v =? Dp-complete.

This result is shown by exploiting Theorem 5 for the up-
per bounds, and by providing reductions from stable model
checking problems for logic programs for the hardness parts.

Thus, while by Theorem 8 PTEL progression requires
NP/co-NP oracle calls, it may be as a near-tractable approxi-
mation of the TEL3 semantics.

Note that the complexity proofs for PTEL-progression ex-
ploit Theorem 5 for checks of varying prefixes If . The progres-
sion DAGs Nk

0 of P(ψ, If) in Lemma 4 can be instantiated
for them on the fly, and with P inc

TEL we can easily extend Nk
0

incrementally. It is possible to see that the DAG representation
leads to an equivalent formula of the P inc

TEL. Taking the Nk
i=0

as a starting point we proceed top-down adding the proper
connectives and placing k− i many Y operators in front of the
sub-formula associated with the leaves of the DAG.

5.2 Progressing Temporal Programs
As mentioned, temporal ASP programs are an important frag-
ment of TEL, for which efficient PTEL progression is desir-
able. We achieve this by suitable syntactic restrictions that
resemble well-known classes of logic programs.
Definition 10 (Temporal Programs, cf. [Cabalar, 2010;
Aguado et al., 2023]). A temporal program is any set of tem-
poral rules of one of the following forms:

• (initial rule)

r ∶ b1 ∧ . . . bk → c1 ∨ ⋅ ⋅ ⋅ ∨ cl with k, l ≥ 0 (4)

where all bi, cj are in {p,Xp,¬p,¬Xp ∣ p ∈ P};
• (dynamic rule) Gr, where r is an initial rule;

• (fulfillment rule) either G(Gp → q) or G(p → Fq),
where p, q are atoms.

An initial or dynamic rule r is a constraint, if its head is � (i.e.,
l=0), and is a fact if its body is empty (k=0) and l=1. We call
{p,X p ∣ p ∈ P} temporal atoms, and we denote by B+(r)
(resp. B−(r)) the set of (resp. negated) temporal atoms in the
body of r, and by H(r) the set {c1, . . . , cl}.

Using auxiliary atoms, temporal programs are as expressive
as full TEL [Cabalar, 2010] and harness the full complexity of
TEL. This is paralleled by the fact that the complexity results
in Theorem 8 carry over to temporal programs; in particular
that PTEL progression is Dp-complete.

As a syntactic restriction, we first consider normal pro-
grams, namely rules r, where H(r) = {p} or {X p}, i.e. l ≤ 1
w.r.t. (4) and fulfillment rules.
Theorem 9. Given a normal temporal program π and a prefix
Tf , deciding whether PTEL(Tf , π) = v for v ∈ {�,⊺, ?} can
be done in polynomial time.

Proof (Sketch). Let k = ∣Tf ∣−1. By Lemma 4 and Theorem 5,
we can compute Nk

0 in polynomial time, and evaluate it on
Tf in polynomial time, obtaining as outcome vTf . According
to the conditions of PTEL(Defn 8), we may have to consider
some (all) Hf ⊂ Tf and evaluate Nk

0 over If = ⟨Hf ,Tf ⟩.
Nk

0 represents a set of implications, and after evaluating inNk
0

the negated atoms over Tf , the atemporal rules (not involving
any temporal operator) in Nk

0 amount to a set of Horn clauses.
We can compute the least model Mf of these clauses in poly-
nomial time resp. find they have no model. As for the remain-
ing implications in Nk

0 , sub-formulas within the scope of an
X,G,F operator cannot lead to ⊺ or �, and thus either formu-
las are removed (when ϕ′′(Hf) should yield �) resp. subfor-
mulas (when ϕ′′(Hf) should yield ⊺) before computing Mf .
From vTf and Mf , we then easily obtain PTEL(Tf , π).

Unfortunately, the temporal program πEX is not a normal
temporal program. In what follows we extend tractability to
the larger head-cycle-free class, which includes πEX .

Given a temporal program π, its ω-unfolded version πω
contains every initial rule r ∈ π and for each dynamic or
fulfillment rule G(r) ∈ π it contains Xi(r) for all i ≥ 0.

For the sake of readability given an unfolded rule Xk(r),
we denote p,X q ∈ B+(r) ∪B−(r) ∪H(r) as pk and qk+1.

l0 c_l0 s0 a0 p_f0

l1 c_l1 s1 a1 p_f1

Figure 4: Temporal dependency graph of the program in Example 1.

Definition 11 (Dependency Graph). The dependency graph
of a temporal unfolded program πω is the directed graph
DGπ = ⟨V,E⟩ where V = {pi ∣ p ∈ P and i ≥ 0} and (i)
(a, b) ∈ E if a ∈ H(r) and b ∈ B+(r) for some rule Xkr in
πω, (ii) (qk, pk′) ∈ E for k′ ≥ k if Xk(Gp → q) ∈ πω, and
and (iii) (qk′ , pk) ∈ E for k′ ≥ k if Xk(p→ F q) ∈ π.

Intuitively, (ii) and (iii) are added because we can read Gp
and Fp as a conjunction resp. disjunction of Xip, i ≥ 0.

We call a program π head-cycle free (hcf), if all the heads
contain only positive temporal atoms, and its ω-unfolded ver-
sion πω has the hcf property defined as follows: whenever
distinct a, b ∈ V are on a cycle of DGπ, then (a) no rule
Xk r ∈ πω satisfies {a, b} ⊆ H(Xk r) and (b) if a = qk and
b = qk′ with k ≠ k′ then no fulfillment rule Xk (p→ F q) ∈ πω
exists. E.g., the program in Example 1 is hcf.

This notion of hcf for temporal programs conservatively
extends hcf for logic programs in [Ben-Eliyahu and Dechter,
1994]. As well known, hcf logic programs can be rewritten
into normal logic programs by shifting atoms from the head to
the rule body. This property generalizes to temporal programs.

Formally, denote for an initial rule r by r← the set of all rules
r′ such that B+(r′) = B−(r), B−(r′) = B−(r) ∪ (H(r) ∖
{a}), andH(r′) = {a}, where a ∈H(r), and by π← the result
of replacing in program π each initial rule r and dynamic rule
Gr by r← resp. Gr′, for all r′ ∈ r←. We then establish the
following result, which is of interest in its own right.
Proposition 3. For any hcf temporal program π, π and π←
have the same equilibrium models.

As the program π← is easily constructed from program π,
we can generalize Theorem 9 to a larger class of TASP :
Theorem 10. Given a hcf temporal program π and a prefix
Tf , deciding whether PTEL(Tf , π) = v for v ∈ {�,⊺, ?} can
be done in polynomial time.

The notion of hcf can, in particular, be fruitfully applied to
TASP classes from the literature, such as the STLP fragment
[Cabalar and Diéguez, 2011]. STLP admits two types of ini-
tial rules: (i0) B ∧N →H , or (i1) r: B ∧XB′ ∧N ∧XN ′ →
XH , and dynamic rules G(r) with r an initial rule of type
r1, where B,B′ are conjunctions of atoms, N,N ′ are con-
junctions of negative literals ¬p with p ∈ P , and H,H ′, are
disjunctions of atoms. Notably, program πEX is of this form.
We show that for STLP programs, the hcf property can be
efficiently verified. Let DGiπ, i ≥ 0, be the subgraph of DGπ
induced by all nodes pj , where p ∈ P and j ≤ i.
Proposition 4. A STLP program π is hcf iff DG1

π satisfies the
hcf-condition.

Figure 4 shows the clipped dependency graph DG1
πEX

,
from which the hcf property of πEX is immediately verified.

Notably, we can use DGiπ to efficiently progress programs
π whose unfolding on the prefix If is hcf. Let us say program

π is k-hcf if DGkπ satisfies the hcf-condition.
Corollary 1. Given a temporal program π and a prefix Tf ,
deciding whether PTEL(Tf , π) = v for v ∈ {�,⊺, ?} can be
done in polynomial time if π is (∣If ∣ − 1)-hcf.

The k-hcf condition can be efficiently checked along the
progression, as DGkπ can be incrementally built.

6 Related Work
Progression has been widely used in CPS, but also in KR, e.g.,
in [Zhou and Zhang, 2017], to generalize the GL reduct for
ASP with variables; in [Belle and Levesque, 2020] and [Liu
and Feng, 2023] to reason about actions in the presence of
belief; in [Lin and Reiter, 1997] and [Vassos and Levesque,
2013] to update a database by the execution of an action.

Bozzelli and Pearce [2016] made a detailed complexity
study of TEL, but considered merely 2-valued semantics.

Tools for stable traces are telingo [Cabalar et al., 2019],
which builds on the clingo solver and handles finite traces,
and STeLP [Cabalar and Diéguez, 2011], which is based on
automata. Progression in temporal ASP is a novel approach in
[Soldà et al., 2023], where recently a framework for temporal
skeptical reasoning was proposed. However, no complexity
study was provided for the monitoring problem.

Furthermore, several stream reasoners and incremental
solvers for ASP semantics exist. One of the first incremental
ASP -solvers was oclingo [Cerexhe et al., 2014], which ex-
tends clingo to handle dynamic events. TICKER [Beck et al.,
2017] is another incremental stream reasoner for finite streams,
which implements a fragment of LARS [Beck et al., 2018].
Calimeri et al. [2021] present an efficient stream reasoner,
which however is limited to stratified programs.
MeTeoR [Wang et al., 2022] builds on DatalogMTL, which

is an extension of Datalog with MTL operators. Wałęga et
al. [2023a] recently proposed an incremental approach. The
main differences between the setting we consider are that
they (1) consider an interval-based semantics, (2) use Horn
rules precluding backward propagation of information, and
(3) define a reduct-based semantics. Furthermore, Walega et
al. [2021; 2023b] introduced a stable semantics for negation
akin to temporal ASP . They studied the complexity of stable
model existence, but neither monitoring nor progression.

7 Conclusion
We have characterized the complexity of THT3 and TEL3 ,
as well as of progression for THT and PTEL by the P and the
PTEL operator, respectively. Our results show that progression
can be viewed as a (nearly) tractable approximation of THT3

and TEL3 semantics, and that tractability holds for significant
fragments covering classes of temporal logic programs.

Our work can be extended in various directions. One could
allow for past-time operators without any restriction, but a
compact representation of progression formulas like a DAG
would be barely needed. More expressive observation traces,
represented by automata, and sets of observation traces can
also be taken into account, modeling possible nondeterminism
in the system. Our future agenda includes this and developing
efficient implementations based on the algorithms and results
presented, as well as refining the progression technique.

Ethical Statement
There are no ethical issues.

Acknowledgments
The project leading to this application has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 101034440.
This work has been partially supported by the WWTF project
ICT22-023.

References
[Aguado et al., 2011] Felicidad Aguado, Pedro Cabalar,

Gilberto Pérez, and Concepción Vidal. Loop formulas for
splitable temporal logic programs. In James P. Delgrande
and Wolfgang Faber, editors, Logic Programming and Non-
monotonic Reasoning, pages 80–92, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[Aguado et al., 2013] Felicidad Aguado, Pedro Cabalar,
Martín Diéguez, Gilberto Pérez, and Concepción Vidal.
Temporal equilibrium logic: a survey. Journal of Applied
Non-Classical Logics, 23(1-2):2–24, 2013.

[Aguado et al., 2023] Felicidad Aguado, Pedro Cabalar,
Martín Diéguez, Gilberto Pérez, Torsten Schaub, Anna
Schuhmann, and Concepción Vidal. Linear-time temporal
answer set programming. Theory Pract. Log. Program.,
23(1):2–56, 2023.

[Bacchus and Kabanza, 1998] Fahiem Bacchus and Froduald
Kabanza. Planning for temporally extended goals. Annals
of Mathematics and Artificial Intelligence, 22:5–27, 1998.

[Bauer et al., 2007] Andreas Bauer, Martin Leucker, and
Christian Schallhart. The good, the bad, and the ugly, but
how ugly is ugly? In Proc. of RV 2007: the 7th Interna-
tional Workshop on Runtime Verification, pages 126–138.
Springer, 2007.

[Beck et al., 2017] Harald Beck, Thomas Eiter, and Christian
Folie. Ticker: A system for incremental asp-based stream
reasoning. Theory and Practice of Logic Programming,
17(5-6):744–763, 2017.

[Beck et al., 2018] Harald Beck, Minh Dao-Tran, and
Thomas Eiter. Lars: A logic-based framework for analytic
reasoning over streams. Artificial Intelligence, 261:16–70,
2018.

[Belle and Levesque, 2020] Vaishak Belle and Hector J
Levesque. Regression and progression in stochastic do-
mains. Artificial Intelligence, 281:103247, 2020.

[Ben-Eliyahu and Dechter, 1994] Rachel Ben-Eliyahu and
Rina Dechter. Propositional semantics for disjunctive logic
programs. Ann. Math. Artif. Intell., 12(1-2):53–87, 1994.

[Bozzelli and Pearce, 2015] Laura Bozzelli and David
Pearce. On the complexity of temporal equilibrium
logic. In 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 645–656. IEEE Computer Society, 2015.

[Bozzelli and Pearce, 2016] Laura Bozzelli and David
Pearce. On the expressiveness of temporal equilibrium
logic. In Loizos Michael and Antonis C. Kakas, editors,
Logics in Artificial Intelligence - 15th European Confer-
ence, JELIA 2016, Larnaca, Cyprus, November 9-11, 2016,
Proceedings, volume 10021 of Lecture Notes in Computer
Science, pages 159–173, 2016.

[Cabalar and Demri, 2011] Pedro Cabalar and Stéphane
Demri. Automata-based computation of temporal equi-
librium models. In International Symposium on Logic-
Based Program Synthesis and Transformation, pages 57–72.
Springer, 2011.

[Cabalar and Diéguez, 2011] Pedro Cabalar and Martín
Diéguez. STeLP–a tool for temporal answer set program-
ming. In Proc. of LPNMR 2011: the 11th International
Conference on Logic Programming and Nonmonotonic Rea-
soning, pages 370–375. Springer, 2011.

[Cabalar et al., 2019] Pedro Cabalar, Roland Kaminski,
Philip Morkisch, and Torsten Schaub. telingo= ASP + time.
In Proc. of LPNMR 2019: the 15th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning,
pages 256–269. Springer, 2019.

[Cabalar et al., 2023] Pedro Cabalar, Agata Ciabattoni, and
Leendert van der Torre. Deontic equilibrium logic with
explicit negation. In Sarah Alice Gaggl, Maria Vanina
Martinez, and Magdalena Ortiz, editors, Logics in Artifi-
cial Intelligence - 18th European Conference, JELIA 2023,
Dresden, Germany, September 20-22, 2023, Proceedings,
volume 14281 of Lecture Notes in Computer Science, pages
498–514. Springer, 2023.

[Cabalar, 2010] Pedro Cabalar. A normal form for linear tem-
poral equilibrium logic. In Proc. of JELIA 2010: the 12th
European Conference on Logics in Artificial Intelligence,
pages 64–76. Springer, 2010.

[Calimeri et al., 2021] Francesco Calimeri, Marco Manna,
Elena Mastria, Maria Concetta Morelli, Simona Perri, and
Jessica Zangari. I-dlv-sr: a stream reasoning system based
on i-dlv. Theory and Practice of Logic Programming,
21(5):610–628, 2021.

[Cerexhe et al., 2014] Timothy Cerexhe, Martin Gebser, and
Michael Thielscher. Online agent logic programming with
oclingo. In PRICAI 2014: Trends in Artificial Intelligence:
13th Pacific Rim International Conference on Artificial
Intelligence, Gold Coast, QLD, Australia, December 1-5,
2014. Proceedings 13, pages 945–957. Springer, 2014.

[Chen and Roşu, 2007] Feng Chen and Grigore Roşu. Mop:
an efficient and generic runtime verification framework. In
Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems, languages and
applications, pages 569–588, 2007.

[Cimatti et al., 2022] Alessandro Cimatti, Chun Tian, and
Stefano Tonetta. Assumption-based runtime verification.
Formal Methods in System Design, 60(2):277–324, 2022.

[de Leng and Heintz, 2018] Daniel de Leng and Fredrik
Heintz. Partial-state progression for stream reasoning with

https://taiger.logic.at
https://taiger.logic.at

metric temporal logic. In Michael Thielscher, Francesca
Toni, and Frank Wolter, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Six-
teenth International Conference, KR 2018, Tempe, Arizona,
30 October - 2 November 2018, pages 633–634. AAAI
Press, 2018.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob.
On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Mathematics and Arti-
ficial Intelligence, 15:289–323, 1995.

[Giacomo et al., 2016] Giuseppe De Giacomo, Yves
Lespérance, Fabio Patrizi, and Stavros Vassos. Progression
and verification of situation calculus agents with bounded
beliefs. Stud Logica, 104(4):705–739, 2016.

[Kautz, 1986] Henry A Kautz. The logic of persistence. In
AAAI, volume 86, pages 401–405, 1986.

[Lichtenstein et al., 1985] Orna Lichtenstein, Amir Pnueli,
and Lenore D. Zuck. The glory of the past. In Rohit
Parikh, editor, Logics of Programs, Conference, Brooklyn
College, New York, NY, USA, June 17-19, 1985, Proceed-
ings, volume 193 of Lecture Notes in Computer Science,
pages 196–218. Springer, 1985.

[Lin and Reiter, 1997] Fangzhen Lin and Ray Reiter. How to
progress a database. Artificial Intelligence, 92(1-2):131–
167, 1997.

[Liu and Feng, 2023] Daxin Liu and Qihui Feng. On the pro-
gression of belief. Artificial Intelligence, 322:103947, 2023.

[McCarthy and Hayes, 1981] John McCarthy and Patrick J
Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In Readings in artificial intelli-
gence, pages 431–450. Elsevier, 1981.

[McCarthy, 1998] John McCarthy. Elaboration tolerance. In
Common sense, volume 98, page 2, 1998.

[Pearce, 2006] David Pearce. Equilibrium logic. Annals of
Mathematics and Artificial Intelligence, 47(1-2):3, 2006.

[Soldà et al., 2023] Davide Soldà, Ignacio D. Lopez-Miguel,
Ezio Bartocci, and Thomas Eiter. Progression for moni-
toring in temporal ASP. In ECAI 2023 - 27th European
Conference on Artificial Intelligence, 30 September, 2023
- 5 October, 2023 Krakow, Poland, October 3, 2023 - In-
cluding 12th Conference on Prestigious Applications of
Artificial Intelligence (PAIS 2023), 2023. In press.

[Vassos and Levesque, 2013] Stavros Vassos and Hector J
Levesque. How to progress a database iii. Artificial In-
telligence, 195:203–221, 2013.

[Walega et al., 2021] Przemyslaw Andrzej Walega, David
J. Tena Cucala, Egor V. Kostylev, and Bernardo Cuenca
Grau. Datalogmtl with negation under stable models se-
mantics. In Meghyn Bienvenu, Gerhard Lakemeyer, and
Esra Erdem, editors, Proceedings of the 18th International
Conference on Principles of Knowledge Representation and
Reasoning, KR 2021, Online event, November 3-12, 2021,
pages 609–618, 2021.

[Wałęga et al., 2023a] Przemysław A Wałęga, Mark Kamin-
ski, Dingmin Wang, and Bernardo Cuenca Grau. Stream

reasoning with DatalogMTL. Journal of Web Semantics,
76:100776, 2023.

[Walega et al., 2023b] Przemyslaw Andrzej Walega, David
J. Tena Cucala, Bernardo Cuenca Grau, and Egor V.
Kostylev. The stable model semantics of datalog with
metric temporal operators. Theory and Practice of Logic
Programming, page 1–35, 2023.

[Wang et al., 2022] Dingmin Wang, Pan Hu, Przemysław An-
drzej Wałęga, and Bernardo Cuenca Grau. Meteor: Prac-
tical reasoning in datalog with metric temporal operators.
In Proceedings of the 36th AAAI Conference on Artificial
Intelligence, pages 5906–5913, 2022.

[Zhou and Zhang, 2017] Yi Zhou and Yan Zhang. A progres-
sion semantics for first-order logic programs. Artificial
Intelligence, 250:58–79, 2017.

	Introduction
	Preliminaries
	Online Setting
	Complexity

	Progression for THT
	Computing P Progression

	Progression for TEL
	Computing PTEL Progression
	Progressing Temporal Programs

	Related Work
	Conclusion

